
Infusing Software Engineering Technology into Practice at NASA

Thomas Pressburger
NASA Ames Research Center

Moffett Field,CA
Tom.Pressburger@nasa.gov

Martin S. Feather

Jet Propulsion Laboratory
California Institute of Technology,

Pasadena, CA
Martin.S.Feather@jpl.nasa.gov

Michael Hinchey
NASA Goddard Space Flight Center

Greenbelt, MD
Michael.G.Hinchey@nasa.gov

Lawrence Markosian

QSS Group, Inc.
NASA Ames Research Center

Moffett Field, CA
lzmarkosian@email.arc.nasa.gov

Abstract

We present an ongoing effort of the NASA Software
Engineering Initiative to encourage the use of
advanced software engineering technology on NASA
projects. Technology infusion is in general a difficult
process yet this effort seems to have found a modest
approach that is successful for some types of
technologies. We outline the process and describe the
experience of the technology infusions that occurred
over a two year period. We also present some lessons
from the experiences.

1. Introduction

Many obstacles impede the infusion of software
engineering research results into the development
community. Practitioners cannot readily identify the
emerging techniques that may benefit them, and cannot
afford to risk time and effort evaluating and trying out
new techniques while there is uncertainty as to whether
they will work for them [1].

This paper describes an ongoing effort conducted
by a software engineering research infusion team
established by NASA’s Software Engineering
Initiative to help overcome obstacles to research
infusion. The team first identifies and assesses
software engineering research relevant to NASA’s
software development activities. This includes
research products from NASA research, NASA-funded
research at universities and in industry, and research
products external to NASA, which includes leading-
edge commercial products.

Next, the team identifies channels to reach the
NASA software practitioners who might benefit from
these products. These channels are used to publicize
the research techniques among NASA and its
contractors’ software development teams. Then,
collaborations are brokered between NASA software
engineers and the technology providers. That is,
guidance is provided during the proposal development
process. Proposals, prepared by the intended users,
rather than the technology providers, are evaluated by
the research infusion team.

Winning proposals are funded in part by dedicated
NASA funding. This funding is for technology
introduction risk reduction: licenses, training, and
reporting. During the period of the collaboration
(typically six months), the research infusion team
tracks progress and intervenes, when needed, to help
overcome obstacles. Finally, the team extracts
lessons learned to sharpen the following year’s
research infusion effort [2].

2. Infusions to date

To date, 14 research infusion collaborations have
been funded, exploiting a wide range of software
engineering technologies oriented towards software
assurance (this focus, since broadened, was initially
part of the team’s charter, and a requirement of our
funding organization).

Technology categories have included:
requirements specification and analysis, software
architecture and evaluation, source code analysis and
defect detection, and software process improvement.
Target projects have included flight software, ground

software, Space Station payload software and Space
Shuttle software.

Sections 2.1 to 2.9, inclusive, briefly describe
each of the nine collaborations to date that have
completed and submitted their final reports, along with
that collaboration’s objectives, what happened, impact
on the project, and success criteria. For more details
on each of them, see
http://ti.arc.nasa.gov/researchinfusion/ Section 3
discusses criteria on which we evaluate our success,
and Sections 4 and 5 discuss lessons learned and
conclusions.

2.1 ARC: “On Orbit Software Analysis” using C
Global Surveyor

This project applied the source code analysis tool
C Global Surveyor (CGS), a research tool developed
within the Automated Software Engineering group at
NASA Ames (ARC) under the Intelligent Systems
program of Computing, Information, and Computing
Technologies, to a payload software module for the
International Space Station (ISS). The tool analyzes C
programs to find dead code and memory access errors:
de-references of null pointers and out-of-bounds array
accesses, and in some cases uninitialized variables.
The main benefits expected of applying the tool were
finding errors in the software and to give feedback to
improve the tool.

The tool reports on the code by classifying
operations as green, orange, or red. Green operations
never result in a runtime error of the above types. Red
operations always result in a runtime error. Orange
operations are those for which the tool cannot
determine one way or the other whether that operation
would cause a runtime error (commonly referred to as
“warnings”). An issue with such analysis tools is their
scalability and the precision of their analysis. CGS was
designed to run quickly on relatively large amounts of
code and to be precise about green operations; that is,
it categorizes relatively few error-free operations as
orange. It is probably less precise, though much faster,
than PolySpace Verifier, another static analysis tool,
about red operations; that is, operations that always
cause errors might be classified by CGS as orange.
The designers of CGS claim that its purpose is to do a
complete coverage analysis of a software system to
quickly narrow down the operations that need to be
analyzed or tested further to determine whether they
can cause an error. This follows because it was
designed to be precise about which operations are
green; thus, the amount of code for which further study
is required will be minimized.

The research infusion team had somewhat
mischaracterized CGS’s purpose as to flag errors in
software, which requires the tool to be more precise
about which operations are red. CGS had been applied
to, and specialized in some ways for, Mars Pathfinder
software and achieved 80% precision on it; that is,
80% of the operations were classified as red or green.
This collaboration was something of an experiment to
see if the tool could provide benefit for the analysis of
other flight software.

The tool turned out to be about 50% precise on
the module, as it had a much different architecture
from that of Mars Pathfinder. If the tool were
enhanced to deal with certain features of the C
language and the application, the precision would have
been about 90%. The project found its user interface
cumbersome.

There were three important positive outcomes
from the collaboration. First, dead code and an
uninitialized variable were found in the module.
Second, feedback was given to the CGS developers
about new capabilities that the tool required to analyze
certain features of C and handle this flight software.
Third, serendipitously, because of his involvement in
the collaboration, one of the CGS developers decided
to apply another tool to the module which pinpointed a
memory leak that had been suspected by the project.

2.2 GSFC: “GSFC FSB Application of Perspective-
Based Inspections”

The goal of this collaboration was to produce
Flight Software Branch (FSB) process standards for
software inspections which could be used across three
new missions within the FSB. The standard was
developed by Dr. Forrest Shull (Fraunhofer Center for
Experimental Software Engineering, Maryland) using
the Perspective-Based Inspection approach, (PBI
research has been funded by NASA Software
Assurance Research Program (SARP)
http://www.ivv.nasa.gov/forresearchers/osmasarp/osma
sarp.php), then tested on a pilot Branch project.
Because the short time scale of the collaboration ruled
out a quantitative evaluation, it would be decided
whether the standard was suitable for roll-out to other
Branch projects based on a qualitative measure:
whether the standard received high ratings from
Branch personnel as to usability and overall
satisfaction.

The project used for piloting the Perspective-
Based Inspection approach was a multi-mission
framework designed for reuse. This was a good choice

because key representatives from the three new
missions would be involved in the inspections.

The perspective-based approach was applied to
produce inspection procedures tailored for the specific
quality needs of the branch. The technical information
to do so was largely drawn through a series of
interviews with Branch personnel. The framework
team used the procedures to review requirements. The
inspections were useful for indicating that a
restructuring of the requirements document was
needed, which led to changes in the development
project plan.

The standard was sent out to other Branch
personnel for review. Branch personnel were very
positive. However, important changes were identified
because the perspective of Attitude Control System
(ACS) developers had not been adequately
represented, a result of the specific personnel
interviewed. Further iterations past the end of the
collaboration resulted in draft Branch inspection
standards for requirements and code which are on
track to be baselined.

2.3 JPL: “Finding Defect Patterns in Reused Code”
using Orthogonal Defect Classification

This effort used Orthogonal Defect Classification
(ODC) to characterize defect reports for code that will
be reused in mission-critical ground software. The
application of ODC to NASA projects has been
previously funded by SARP.

The goal was to identify patterns of defects prior
to reuse of the code, and to successfully infuse ODC
into a project. ODC, as adapted for NASA by the
researchers, characterizes anomaly reports using four
attributes: Activity, Trigger, Target, and Type.

There were several groups of players in this
project: Software Quality Assurance (SQA), JPL’s
Software Quality Initiative (SQI), Dr. Robyn Lutz
(JPL, Iowa State University), and of course the ground
software project. Dr. Lutz worked with the project to
customize the classification entries. The original idea
was to have the project itself learn to do the
classification and analysis of anomaly reports on the
software. However, the funding for the collaboration
was late, the project entered a busy period, and there
was a JPL reorganization, so instead people in SQA
and SQI were taught the technique, and, with help
from the project, classified the anomalies. Dr. Lutz
did the analysis and reported the findings to the
project. Infusing ODC into the SQA and SQI
organizations was an unexpected benefit of the
collaboration.

The project was satisfied with the results of the
ODC analysis. Though the ground software project
was not continued, so the software was not reused, the
software whose anomalies were analyzed was put into
operation, and the analysis results were to be used to
direct its maintenance. The same development team
used on another project an ODC analysis which
indicated process problems that the team had expected.

One factor that helps introduce the use of ODC is
the use of a bug tracking database that is compatible
with ODC classifications; for example, one that has
pulldown menus so that the classification can be done
easily when the anomaly is reported, rather than later
when it is more difficult to decipher the anomaly
report. Requirements for such a capability have been
added to JPL’s next generation problem reporting
system.

2.4 JSC: “Can CodeSurfer Increase Inspection
Efficiency?”

CodeSurfer is a commercial tool from
Grammatech, Inc. for browsing C code. It provides
lists of variables and constants used or set by
functions, call graphs, pointer analysis, indications of
dead code, etc. The objective of this project was for
the Software Assurance organization to apply the tool
during the inspection phase of an International Space
Station (ISS) software component, to see if the tool
made the inspections more time efficient and/or more
productive; that is, more defects were found. Because
the funding arrived late, and the acquisition took
longer than anticipated, the window for the inspection
phase of the module was missed. It was decided to
apply CodeSurfer to the component anyway, as an
experiment to compare with previous inspection
results. Also, CodeSurfer was applied during
inspection of another ISS component.

The results show that the time required for doing
an inspection using CodeSurfer is reduced from that
for a manual inspection, and the inspection is more
productive. The collaboration’s final report states that
manual code inspection required 17 hours, and only
12.25 hours with CodeSurfer. Manual code inspection
found 8 defects, whereas 18 (including 6 of the 8
found manually) were found using CodeSurfer.
Though the defects were all classified as minor, these
are clear benefits. However there were difficulties.
There is a learning curve: the training helped, but the
project suggested that the tool would be difficult to use
if there was a long time between uses, so ideally, there
should be people who use the tool more frequently.
The tool required that the code compile with one of the

compilers provided with the tool: this ran into
problems because the code analyzed would only
compile using a legacy compiler, so some adaptation
was required. Also, Software Assurance did not
always readily have all the required files. The vendor
of CodeSurfer, GrammaTech, Inc., was responsive, but
because of ITAR (i.e., export control) restrictions, the
ISS code could not be sent to the vendor for their
assistance. The net effect was that setup time
swamped inspection time. Obviously, there is a
learning curve, so setup time would be reduced in the
future. The research infusion team sees these as
generic problems to be dealt with for code analysis
tools.

The summary impact is that the Software
Assurance organization is evaluating continued use of
CodeSurfer on C and C++ projects for reviews. They
have demonstrated the tools to the engineers who
developed the ISS components, and are interested in
collaborating with other customers of Software
Assurance in using the tool to troubleshoot software.

2.5 MSFC: “Static Analysis of Flight Software”
using Coverity SWAT and C Global Surveyor

The objective of this effort was to apply two
source code analysis tools to four flight software
components, in order to find errors, and characterize
the utility of the tools. The components varied in
maturity from the coding and unit testing phase to the
maintenance phase.

The two analysis tools were C Global surveyor
(characterized above in Section 2.1) and Coverity,
Inc.’s Software Analysis Toolset, SWAT (now called
Prevent). The latter is a source code analysis tool for C
programs that looks for certain types of errors, such as
use of uninitialized variables, out-of-bounds indices
(buffer overrun), dead code, and functions that should
check their return value but don’t. It does not claim
complete coverage, in contrast to CGS, which does;
that is, SWAT does not necessarily find all the errors
of a particular type.

A team from Marshall Space Flight Center
(MSFC) was trained at Ames Research Center (ARC)
in the use of CGS. This resulted in a number of
recommendations for the tool, similar to those found in
the ARC collaboration (section 2.1). The tool
produced about 300 warnings for a couple of the
modules; about 20% were analyzed, and no errors
were found. On the other hand, the technology
developers reported that on one of the MSFC
applications, CGS was 95% precise. An update to CGS

that fixed some of the issues raised was delivered to
MSFC, but it was not run again on their software.

The Coverity tool was applied to the components.
It flagged a total of 74 errors in 14 minutes. Analysis
of those errors by flight engineers resulted in no errors
found in the most mature component, but 9 in the other
components were considered errors that were
registered to be fixed; four of these had escaped formal
testing. A usability issue was brought to the attention
of Coverity.

The project concluded that the Coverity SWAT
tool thus had a low false alarm rate and fast execution
times and was recommended for use in future projects’
software development process if the associated
licensing costs can be afforded.

2.6 USA: “USA Application of Perspective-Based
Inspections”

The Perspective-Based Inspection approach was
applied by Dr. Forrest Shull in an ISS software
development project at United Space Alliance (USA).
The goal was to increase the quality of the product,
and increase inspection efficiency over previously used
techniques.

Project personnel were interviewed to tailor the
approach, and instruction was provided, with actual
software inspected as part of the instruction. Defects
were found during that inspection, which was
surprising because that software was reused from a
previous version and hence thought to be defect free.
Following the course, Perspective-based inspections of
code were carried out, finding a major defect which
had escaped previous inspections. On a qualitative,
subjective level, the response from the project team
consisted of only positive comments.

The experience was that less time was required
per inspector, who also had a more structured focus. It
was noted that Perspective-Based Inspections required
more inspectors than the project’s usual practice. The
approach was recommended as an optional practice at
USA. A kit was created to easily help craft
perspectives for smaller projects. The project
recommended the approach for larger projects.

2.7 ARC: “Application of Software Cost Reduction
(SCR) Tools and Methods to On-Orbit Crew
Displays”

The SCR technology, originated by David Lorge
Parnas, and further developed at the Naval Research
Laboratory (NRL), provides tools and a method for
developing, simulating, and analyzing formal

requirements specifications. An SCR specification is
represented in a tabular format (Parnas tables) and is
based on a state-machine model. In addition to tools
for consistency checking to detect syntax and type
errors, missing cases, unwanted non-determinism, and
tools to check application properties, such as safety
properties, SCR also supports rapid construction of
graphical user interfaces (GUIs) that simulate the
target system’s interface, allowing for simulation of the
required system behavior based on the underlying SCR
specification.

The goal of this project was to apply SCR tools
and methods to develop and validate a requirements
specification of the display interface to an incubator.
The incubator was to be a Space Station Biological
Research Project (SSBRP) science payload.

The SCR technology providers gave a three-day
training course on the SCR tools and method at the
NASA Ames Research Center (ARC) to the project
members. Lack of availability of the tool on the
preferred ARC platform at the time of the training
meant that limited hands-on training occurred during
that visit, though the tool was delivered shortly
thereafter. Natural language incubator display
requirements and use cases for its Flight mode were
used as the basis for collaboration between the project
members with the SCR technology providers. The
technology providers encoded some of the
requirements as a formal SCR requirements
specification; this took about two person-weeks. The
specification described behavior for setting the
chamber fan speed and a goal temperature based on
user inputs. The SCR technology providers had
planned to give hands-on training on the GUI builder
to the project members, but schedule conflicts
prevented this. The SCR technology providers
provided tutorial materials and remote assistance
resulting in the construction of a customized GUI for
the incubator display. The project members tested the
constructed display GUI against the requirements and
found its behavior consistent with the requirements.

The project members reported that no errors in the
original natural language requirements and use cases
were uncovered in this process, though the SCR
technology providers noted there was a lack of
completeness and existence of ambiguity in the
original natural language requirements that was
reflected in the SCR specification. An example of this
is that it was not specified how the functions interacted
or conflicted; e.g., what the required behavior should
be when a new command is given before the previous
command completes.

The project members considered the use of the
SCR technology successful in that the SCR
requirements specification correctly captured some
requirements of the Incubator Display. It does not
appear that the project members can develop SCR
specifications unaided. The project members
recommended, and the technology developers agreed,
that the SCR methods and tools should be used when
the understanding of the software requirements is
mature. The project members concluded that the
toolset is valuable for validating requirements prior to
design, and made other recommendations regarding
extensions to the SCR methods and tools which the
technology providers said have been or could easily be
implemented.

2.8 IVVF: “Infuse CodeSurfer into NASA IV&V
Process”

As described above in Section 2.4, CodeSurfer is
a commercial tool for browsing C and C++ code. It
allows for visualization of data and control flow via,
for example, call graphs, and forward and backward
slicing. It was previously employed at JSC where it
was used during code inspections (see Section 2.4).

The goal of the collaboration at NASA’s
Independent Verification and Validation Facility
(IVVF) was to apply the tool to analyze flight code for
IV&V. The original target software was not available
in time, so software for a solar observatory was
substituted. The observatory software was about 1.5
MB of C/C++ for C&DH, ACS, and instrument code.
A delay was encountered by the tool not being able to
ingest this software; this was eventually repaired in a
new release of CodeSurfer. The observatory software
analysis task was transitioned to another contractor
which ended the collaboration. To add value to the
collaboration, GrammaTech provided the infusion
effort with the results of running its CodeSonar defect
detection tool on the observatory software. Because of
the various changes in the collaboration, rigorous time
and effectiveness comparisons with other tools and
previous experience could not be obtained.

CodeSonar identified several defects not identified
by other tools or manual analysis. It reported about 60
defects and had a false alarm rate of about 50% which
was in line with expectations. The reported defects
were analyzed using another tool, Understand for C++,
to determine whether they were true defects or false
alarms; this took about half an hour per defect, which
would have been less if the integrated
CodeSurfer/CodeSonar interface (which exists but was
not provided) had been used.

The project suggested that the people who will set
up CodeSurfer to ingest the target software need to be
familiar with compiler technology, and receive
separate training, but users unfamiliar with compiler
technology can readily become proficient in using
CodeSurfer once it is set up on the target software and
they are familiar with the platform. The project said
ease of adoption was enhanced by using the Unix
version of CodeSurfer.

The project recommended the continued use of
CodeSonar, especially with the integrated interface
with CodeSurfer. It also recommended CodeSurfer
when the control and data flows are sufficiently
complex, and the incurred setup time doesn’t swamp
the analysis time.

Despite changes in the prime IV&V contractor,
CodeSurfer resides in the IVVF tools lab, and it is
being used on another project.

2.9 JPL: Application of SpecTRM at JPL’s
Advanced Project Design Team (TeamX)

SpecTRM is a tool, from Safeware Engineering
Corporation, that provides for capture of requirements,
assumptions, design, design principles, design
rationale, hazards, risks and their linkages.

The Jet Propulsion Laboratory (JPL) created the
Advanced Projects Design Team (Team X) in April
1995. This team produces conceptual designs of space
missions for the purpose of analyzing the feasibility of
mission ideas proposed by its customers. The
customers often consist of principal investigators of
design teams who aim to plan new mission proposals.
The study takes one to two weeks (usually involving 3
3-hour collaborative sessions) and the design is then
documented in a 30 to 80-page report that includes
equipment lists, mass and power budgets, system and
subsystem descriptions, and a projected mission cost
estimate. The study is then reviewed and summarized
and an abbreviated report is also produced. There have
been over 100 to date.

Historically, rationale for design options and their
risks have not been retained during the fast-paced
Team X design sessions so it is not possible (for
example) to subsequently investigate the sensitivity of
the design to changes in the design parameters. The
goal of this infusion was to investigate the feasibility
and benefit of using SpecTRM during Team X session
to capture design rationale (options considered, the
basis for making design decisions, and the hazards and
risks associated with the decisions), to estimate the
benefits of doing so, and to determine the changes

needed to accommodate SpecTRM’s use if it were
decided to be beneficial.

This infusion used an aerobot mission to Titan as
its TeamX test case. The process carried out was for
members of TeamX to provide the technology provider
with information about their work during the design
session, so that the provider could enter the data into
SpecTRM. (This process was followed since
purchase and training in the use of SpecTRM was not
included in the proposal.) The provider organized the
information in SpecTRM as system-level goals,
requirements, assumptions, constraints, design
principles, action items, hazards, and then linkages
among them. The data captured was a subset of the
information captured in the TeamX directory. The
project claimed that the biggest benefit was that these
attributes were systematically described and traceable.

The project described conditions and suggestions
for the integration of SpecTRM into the TeamX
process. For example, it would help to have a
knowledge base of previous designs and their
rationales. Also, the systems engineer on TeamX
should be trained in the tool. Another suggestion is to
build an interface to SpecTRM that provides TeamX
members the same format for entering information as
they use now; also suggested was a concurrent, multi-
user SpecTRM.

A journal paper describing the SpecTRM/TeamX
experience is in progress. The technology assistant was
hired at JPL, so expertise in SpecTRM will be readily
available at JPL.

As far as adopting SpecTRM, the TeamX
management will decide what its priorities are and how
much funding to allocate to each priority. If it turns
out that design rationale capture is a priority and
funding is allocated to it, SpecTRM is one of the
options TeamX will consider.

3. Success Criteria

From the outset, it was our desire that the long-term
success criteria would be that the research products
used in the collaborations become adopted for future
software development by the proposing teams and/or
their organizations. The need for patience (“long term
success”) stems from the fact that we are often dealing
with mid TRL-level (Technology Readiness Level)
research products that may lack productization, and
hence will require further development before being
ready for mainstream adoption by flight projects. Even
for high TRL products there are factors that constrain
immediate adoption. For example, a high TRL
commercial product may have a high license fee,

accommodation of which requires advance budgetary
planning. The timescale of our efforts motivated us to
seek several short-term success criteria that would be
indicative of progress towards our long-term one, as
follows:

1. The success criteria of the collaboration projects
funded are met. This includes a positive rating for
each product on the evaluation criteria metric.

2. The research product is adopted by the
collaborating software development team for
current use.

3. The research product is adopted by the
collaborating software development team for
current use

4. The software development team using the product
provides feedback, including performance data, to
the research team to guide future development of
the product.

5. Six months after the funded collaboration period
the research product is still being used by the

development project or by a successor
development project.

6. Independent of the success of the collaborations,
“lessons learned” regarding the challenges and
success factors for software development
technology infusion within NASA.

Also relevant to judging the impact of the
collaborations is the penetration factor (PF) used for
Software Assurance Research Program quarterly
reviews. Only the two highest PFs are of interest to us
in the research infusion initiative:

PF 8: Data passed back to project;

PF 9: Results actually used by the project.

Table 1 summarizes each of the nine infusions that
have completed as of the time of writing. It shows
the penetration factor of each project, a tick (!) in the
relevant column indicates that corresponding criterion
(1 to 6) above is satisfied. A clock symbol (")
indicates that it is anticipated that this criterion will be
satisfied shortly (within the 2006-2007 timeframe). A
star (!) indicates that the criterion will be achieved
only conditionally on the cost of the tool.

Project PF 1 2 3 4 5 6 Impacts
ARC - CGS on ISS payload
software

9

!!!!

!!!!

Found 2 errors to be fixed.
Useful feedback to the CGS developers.

GSFC - PBI in Flight
Software Branch

9

!!!!

!!!!

!!!!

!!!!

!!!!

!!!!

PBI led to changes in the projects’
development plan. Expected rollout of
PBI in FSB standards.

JPL - ODC on ground
software

9

!!!!

!!!!

!!!!

!!!!

Training occurred in several JPL
organizations. ODC led to several
recommendations that will be used in
project maintenance phase.

JSC - CodeSurfer for
Inspections of ISS software

9

!!!!

!!!!

!!!!

!!!!

Found 12 additional (minor) defects.
Tool is continuing to be evaluated.

MSFC - SWAT & CGS on
Flight Software

9

S

!!!!

!!!!

!!!!

""""

!!!!

Useful feedback to the CGS developers.
SWAT found 9 defects worth fixing in
the software, some of which had
escaped formal testing.

USA - PBI on ISS Software
9

!!!!

!!!!

!!!!

!!!!

!!!!

!!!!

Found 6 “major” defects, several of
which had escaped previous inspections
and/or occurred in reused code. Will
continue to be used and was
recommended as an optional process.

ARC - SCR on ISS payload
software

8

!!!!

!!!!

!!!!

Good exposure to the technology.

IVVF – CodeSurfer/Sonar
on Flight Software

9

!!!!

!!!!

!!!!

!!!!

""""

!!!!

CodeSonar found non-trivial defects,
and its use is recommended.

JPL - SpecTRM to capture
mission design rationale

8

!!!!

!!!!

!!!!

Adoption considerations were
explored. Journal article in progress.

4. Some Lessons Learned

The completed research infusion projects that have
completed have raised a number of issues, confirmed
some expectations, and debunked others:

• Some developers are not proficient at
research-oriented activities and need guidance and
oversight. These teams are likely to benefit from more
detailed pro forma documentation or templates (kick-
off meeting agenda, project plan, reports). For specific
categories of tools (such as source code analysis tools)
we can provide very detailed templates. They also
require frequent oversight (a) to ensure that
communication is occurring between developers and
technology vendors and (b) to ensure that the schedule
is being followed. Not all the projects require this
level of support but it is likely to benefit Research
Infusion by promoting uniform, higher-quality
collaboration practice.

• There are various answers to the question
“What is the next step”—from research infusion to
technology transfer. A general solution is unlikely.
Some technologies are readily integrated and
generalized into a parent organization’s existing
processes (for example, Perspective-based Inspections
at GSFC)—they are modifications to existing
processes. Various other technology-specific
approaches may be appropriate; e.g., PBI may be
supported by the Software Engineering Initiative’s
Training strategy.

• Tighter qualification of technology/project
combination may be needed. One of the source code
analysis tools used at ARC and MSFC had previously
been successfully applied to NASA software.
However, the software that was the subject of the
infusion study had different technical features to the
previously successful software applications, and it
turned out that the analysis tool did not transition well
to the software with different features. Also, the
appropriate lifecycle context and purpose for the tool
(in this case) may not have been clear to the
development teams.

• Sometimes project personnel already have in
mind technologies they are interested in and the
research infusion effort serves predominantly to
provide seed money so that the desired collaboration
can take place, and track its progress once initiated..
This was the case with the JPL/SpecTRM
collaboration. In the case of an ongoing collaboration,
the research infusion team brokered the collaboration
between the developers and technology providers.

• Collaborations’ project plans should
explicitly include an iterative approach to technology
application, scaling up with each iteration.

• Leading-edge tools sometimes have
problems, e.g., needing specialized skills for set-up.
Technology providers have made efforts to
compensate.

• To succeed, training and continued support
are needed. For example, USA received onsite training
on applying PBI technology to its own application.
This reduced risk and cost as well, since part of the
target application was used in the training session.
“The most successful way to do tech transfer is to put a
member of the [technology vendor team] on the
development team”1

• The profile of effort required to learn new
technologies varies with the technology. For example,
a few days may be enough to learn a software
browsing tool such as CodeSurfer, or to apply SCR
tools to an existing SCR specification. But committed
blocks of time and more resources and suitable
background may be required to become facile with
aspects of the technologies, such as SCR specification
development, with the expectation that the payoff
(such as being able to take advantage of applying the
SCR tools) would be worth the effort.

• Busy researchers and project members may
have scheduling pressures that take precedence over
infusion studies, which may lead to significant delays
in the infusion projects.

• NASA is a dynamic environment. It is
important to consider the loss of organizational
memory as a risk up front and plan for its mitigation.
The application that SCR was applied to was stopped,
and its employees dispersed, so expertise in SCR was
dispersed as well. The contractor PI using CodeSurfer
lost its prime status so work on analyzing the solar
observatory was transferred to a new contractor not
necessarily using CodeSurfer; however in this case, the
tool remains in the IVVF tools lab and is still in use at
the original PI contractor on other projects.

• If the lead-time between technology proposal
and beginning the project is too great, the necessary
personnel may be lost, or it may be impractical, or
unbeneficial, to use the technology at this stage of the
development. We have had two projects which
needed to change and use alternative software, and
another project which it was no longer feasible to run
as a result of this delay. In an attempt to counteract
this, the 2007 process for soliciting proposals and

1 Matt Barry, JPL, (paraphrased) communication to the
authors.

choosing among them will begin later in the year,
nearer to the time that funding will be available.

5. Conclusions

The overall impact and benefits of research
infusion to space systems are several: previously-
inaccessible software assurance technologies have
been successfully infused; some have been adopted for
inclusion in organizations’ development practice;
several have continued to be used for some time
following the end of the collaboration; the software
development team has provided feedback to the
technology developers; and, lessons learned have been
identified regarding the challenges and success factors
for software development within NASA.

Overall, Research Infusion’s set of completed
collaborations supports the hypothesis that with
selection of appropriate technologies, matching of
technologies with software development teams, and
guidance and oversight, infusion of new software
engineering technologies can be performed
successfully on a minimal budget. Note however that
the technologies considered in these efforts have been
constrained to those that can be introduced within the
context of existing software development practices.
For technologies whose infusion would be more
revolutionary, requiring a radical shift in existing
practices (e.g., an approach that requires formal
specification of the entire software system, or a new
programming language that is incompatible with
existing platforms and personnel skills), significant
additional factors that we have not had to address will
likely be involved.

6. Acknowledgements

The research described in this paper was carried
out at NASA Ames Research Center, Langley
Research Center, Marshall Space Flight Center, and
Goddard Space Flight Center, and at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

The research infusion team was led by Tom
Pressburger from 2003 to 2005. Mike Hinchey now
leads the team. When this work was undertaken, team
members included the authors, along with Ben Di Vito
(Langley), Luis Trevino (Marshall), and Tim Menzies
(West Virginia University); Wes Deadrick (NASA
IV&V Facility) has been an advisor and reviewer of
collaborations. Current team members are: Mike
Hinchey (Goddard), Tom Pressburger (Ames), Ken
Chen (Johnson), Caroline Wang (Marshall), Michael
Holloway (Langley) and Allen Nikora (JPL).

We are indebted to John Kelly, NASA Office of
the Chief Engineer, who leads the NASA Software
Working Group and provides support for the initiative.
Martha Wetherholt in the NASA Office of Safety and
Mission Assurance also provides financial and other
support for the initiative, administered in part by the
NASA IV&V Facility, where the Software Assurance
Research program operates under the direction of
Marcus Fisher (previously under Ken McGill).

We would like to acknowledge the many
researchers who have lent their support and the many
software developers who have submitted collaboration
proposals, and worked with us to make this initiative
such a success.

References

[1] T. Pressburger, B. Di Vito, M.S. Feather, M.G. Hinchey,

L. Markosian and L. Trevino. Infusing Software
Assurance Research Techniques into Use. Proc. 2006
IEEE Aerospace Conference, Big Sky, MT, 10-14
March 2006, IEEE Computer Society Press.

[2] M.G. Hinchey, T. Pressburger, L. Markosian and M.S.
Feather. The NASA Software Research Infusion
Initiative: Successful Technology Transfer for Software
Assurance. Proc. TT’06, Workshop on Technology
Transfer for Software Engineering, International
Conference on Software Engineering, Shanghai, China,
20-28 May 2006, ACM Press.

For more information on each of the completed

infusion collaborations discussed herein, and the
additional ones ongoing at the time this paper was
written, see the website
http://ti.arc.nasa.gov/researchinfusion/

